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Abstract: A general law is proposed that states "a large numbers of slower processors may be better than a small
number of faster processors for I/O-dominant applications".  The need for such a guideline is demonstrated because
simple linear sums of individual processor performances do not provide an accurate estimation of I/O performance
for a parallel computer. Furthermore, the law  was formulated to allow better cost estimations when choosing the
number and type processor for a Massively Parallel (MP) I/O application.  The law is confirmed with a simple
proof, analytical model, simulation, and benchmarking. A Distributed Cache Subsystem (DCS) technique is
proposed to further improve the performance of the MP computers running I/O-dominant applications. Using
simulations and benchmarks the DCS technique has shown the potential to achieve very high performance using
standard sequential file systems.  The general conclusion proposed is that a  MP computer containing a small
number of high-performance processors may not be the best choice for I/O-dominant applications area.

1.  Introduction

Historically massively parallel (MP) computing has been successfully used for scientific, i.e. CPU-dominant,
applications where MP computers play the role of "number crunchers". Although  it was observed that many
scientific applications have very large I/O requirements [1],  the I/O subsystems were considered as auxiliary
devices whose main goal is to load processing units with the sufficient input data.  In recent years, decision support
systems based on very large legacy database processing [2] have entered the mainstream commercial market and
are expected to show continued growth.  This class of applications has both huge I/O requirements and large CPU
requirements. We call these applications I/O-dominant.  Because these new  MP applications require both CPU and
I/O performance, a simple cumulative sum of individual processor performance is not an effective method to
determine peak performance capabilities. This research attempts to clarify the evaluation criteria that should be
used to evaluate I/O-dominant MP systems and to suggest one possible way to satisfy enormous I/O requirements
without expensive high-performance hardware or parallel file systems.

2. Performance evaluation

We consider typical I/O-dominant behavior to be very close to the general model of most business applications
where the application periodically reads a data block from (or writes the data block to) the storage devices and then
spends some time processing the block. The average time needed to perform one I/O operation is Tio. The average
amount of processing needed to process one data block is Tcpu. Actually Tcpu has the "millions of machine
instructions" dimension, but we use "time" dimension to normalize processor speed. For  simplicity we assume
Tcpu is one for the slowest processor. Other processors performances are normalized to this processors
performance using the undimensioned value called Sp.

We consider the ideal MP computer consists of Np processing nodes, Nio I/O nodes operating in parallel and
an interprocessor communication (IPC) network operating with the average latency time Ttr. The overall parallel
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computer's performance index widely used in the MP scientific computing is the sum of all processing nodes'
performances

Ptotal = Np * Sp        (1)

In the scientific computing field, the parallel computer having a larger overall performance index is considered
to be more powerful. We demonstrate below that this statement is not appropriate for I/O-dominant applications.

For the I/O-dominant application, the natural performance index P should be considered to be the number of
data blocks being processed in one time unit. A simple evaluation of the performance index P follows. Considering
the single processor computer

                       1
P =  -----------------------       (2)
           Tio +  Tcpu/Sp

Considering the MP computer and assuming all jobs to be ideally distributed between processing nodes we may
estimate the performance as follows.

a. Ttr does not depend on the processor speed

                      Np
P =  -----------------------------       (3a)
          Tio +  Ttr + Tcpu/Sp

b. Ttr decreases proportionally to Sp. (i.e. the IPC network transmission rate increases with increasing
processor speed).

                      Np
P =  --------------------------------       (3b)
          Tio +  Ttr/Sp + Tcpu/Sp

In the (3a and b) we also assume that I/O capabilities of the MP computer are sufficient to serve each I/O request
with no additional delays caused by I/O queues. This assumption allows us to add individual performances of all
processing nodes. This assumption and formula (3) are an oversimplification,  but it allows us to demonstrate an
important observation.

Consider the performances of two MP computers with the same overall performance index (1).

Ptotal1 = Np1 * Sp1
Ptotal2 = Np2 * Sp2
Ptotal1 = Ptotal2

Attempting to compare the performances of these two MP computers on I/O-dominant applications we should
estimate P1-P2, where P1 and P2 are calculated according to (3a).

                                   Np1                                        Np2
P1 - P2 =   -------------------------------  -  -------------------------------   =                                   (4)
                     Tio +  Ttr + Tcpu/Sp1       Tio +  Ttr + Tcpu/Sp2

                                 Np1 * Sp1                         Np2 * Sp2
               =   -------------------------------  -  -------------------------------   =
                     Sp1*(Tio+ Ttr)+Tcpu      Sp2*(Tio+ Ttr)+Tcpu

                                                     (Tio+Ttr) * (Sp2-Sp1)
               =  Ptotal *  -------------------------------------------------------------------
                                    (Sp1*(Tio+ Ttr)+Tcpu) * (Sp2*(Tio+ Ttr)+Tcpu)

Considering the difference (P1-P2), which if positive indicates better performance, we see that its sign depends
only on the sign of  (Sp2-Sp1) as all other terms are positive. This result means that P1 is greater than P2 when
Sp1 is less than Sp2 and vice versa. In addition, P1 is equal to P2 if and only if Sp1 is equal to Sp2  (Np1 is equal
to Np2 respectively). Using (3b) we could obtain the same conclusion. Therefore, taking into consideration the
underlying assumptions stated above we may formulate the rule:
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For the two given parallel computers with the same cumulative CPU performance index, the one
which has slower processors (and a probably correspondingly slower interprocessor communication
network) has better performance for the I/O-dominant applications (while all other conditions are
the same except the number of processors and their speed).

The assumption of sufficient I/O power might seem unrealistic because an I/O-dominant workload will cause
overload conditions on I/O nodes. In order to take this into consideration, we developed more complex analytical
and simulation models instead of the simplest mean-value analysis above.

3. An analytical model

To account for the limited I/O capabilities of the real MP computer we use the well-known central server model
with N-channel server [3]. The workload is described as above with Tio and Tcpu. An additional assumption is
that there are only Nio I/O nodes in the MP computer.

Using Scherr's [3] model we can compute probabilities pi , where  pi is the probability of  i  I/O nodes being
busy.  The utilization coefficient of I/O nodes can then be computed. The performance of the MP computer under
the given workload will be proportional to this coefficient. We normalize the computed performance by the single
processor computer performance ( See Table 1, row  (1,64) ). The data in Table 1 demonstrate the results computed
on Scherr's model for the different workloads and different pairs (Np,Sp). For all pairs Np*Sp=Const. Nio=8. We
also assume that each processing node cannot perform I/O operations in parallel, i.e., only one I/O node is involved
in each I/O operation. Accounting of the IPC network latency is done by summarizing Tcpu and Ttr, i.e. we
consider the case when faster processors are connected with an accordingly faster network. We assumed Ttr=1,
i.e., the slowest processors transmission time is equal to the I/O time.

We see that for CPU dominant workload (Tcpu>=100) the performances are approximately the same for all
values (Np,Sp) while for I/O-dominant workloads a larger numbers of slower processors yield better performance.
These results confirm that the rule presented above is correct even for MP computers with limited I/O capabilities.
The fact that 64 processors provide better performance than four processors is obvious, but the fact that these 64
processors could be 16 times less powerful, and be connected with a 16 times slower network is not fully evident.

Another interesting question which we could answer using this simple analytical model is "What number of
slower processors could provide the same performance as the given n number of fast processors?". To answer this
question, assume we have four processors in the MP computer. Each processor is of speed 32. Nio=4, i.e. I/O
capabilities are sufficient to serve I/O requests with no queues. Tio=1, as before. The computer with slower
processors has the slower IPC network.

Table 1. The estimated relative performances for MP computers with eight I/O nodes.

                                      Tcpu
(Np,Sp)   0.01    0.1      1     10    100    1000
--------------------------------------------------
( 1,64)   1.00   1.00   1.00   1.00   1.00    1.00
( 2,32)   2.00   1.99   1.97   1.76   1.24    1.03
( 4,16)   3.98   3.96   3.81   2.84   1.41    1.05
( 8, 8)   7.91   7.83   7.15   4.09   1.52    1.06
(16, 4)   8.01   8.02   8.14   5.24   1.58    1.06
(32, 2)   8.01   8.02   8.14   6.09   1.61    1.06
(64, 1)   8.01   8.02   8.14   6.62   1.62    1.06

Note! These are the relative performances. They are normalized in each column by
different values so different columns must not be compared with each other.

We see from Table 2 that for highly I/O-dominant workloads the performance is almost insensitive to the
processor speed and the transmission rate of the IPC network.

The analytical model has two underlying assumptions that may not be very realistic. First, when some processor
needs to perform an I/O operation it chooses any free I/O node.  Second, the IPC network latency time is assumed
to be constant. In fact, the contention between processors could cause some excessive delays in the interprocessor
links. Besides, more numerous IPC networks require, in general, more messages retransmissions to deliver the
message to the destination. To eliminate these assumptions, a simulation model was developed.
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 Table 2. The  amount of slower processors required to provide the same performance as a four node MP
computer with processor speed 16 and four I/O nodes.

                                     Tcpu
 Sp   0.01    0.1      1     10    100    1000

    ----------------------------------------------
 16      4      4      4      4      4       4
  8      5      5      5      6      8       8
  4      6      6      6      9     15      16
  2      7      7      8     16     28      32
  1      9     10     12     29     56      63

4. Simulation Model

In addition to the described behavior of the analytical model, the simulation model includes the following new
assumptions:

a.The I/O request is directed to the given I/O node. If the I/O node is busy the request will stay in the queue even
when other I/O nodes are free.

b.The IPC network with the hypercube topology is simulated with sufficient accuracy. Real algorithms of
message delivery are employed.

c.The simulation model allows more than one compute process to run on a single processing node. The
influence of multiprogramming to the performance could then be studied.

d.Other features of the simulation model are explained later in the paper.

The simulation run length is 100,000 I/O operations. The performance is estimated based on the simulated time
required to perform these operations. Table 3 shows the simulation results for the same cases as Table 1.
Simulation shows that the analytical model yields overstated performance estimations for the I/O-dominant
workload (Tcpu<100). This difference is due to inclusion of features a. and b. above that were not previously
considered in the analytical model.

The simulation results confirm the general results of the analytical model and support the proposed rule. The
next question we attempt to answer is "How to improve the parallel computer's performance for an I/O-dominant
workload?".

Table 3. The simulated relative performances for  MP computers with eight I/O nodes.

                                          Tcpu
(Np,Sp)   Ttr  |  0.01    0.1      1     10    100    1000
---------------------------------------------------------
( 1,64)  0.016 | 1.00   1.00   1.00   1.00   1.00    1.00
( 2,32)  0.031 | 1.74   1.74   1.73   1.61   1.23    1.03
( 4,16)  0.063 | 2.82   2.78   2.74   2.38   1.40    1.05
( 8, 8)  0.125 | 4.05   4.07   3.96   3.22   1.50    1.06
(16, 4)  0.250 | 5.40   5.33   5.20   4.00   1.56    1.06
(32, 2)  0.500 | 6.38   6.31   6.26   4.62   1.59    1.06
(64, 1)  1.000 | 6.94   6.82   6.75   4.73   1.54    1.03

Note! These are the relative performances. They are normalized in each column
by different values so different columns must not be compared with each other.

5. Approaches to Improve Performance

As we consider equation (3) to be a rough but appropriate estimation of the parallel computer's performance
under the I/O-dominant workload, we can reach some general conclusions on about additional performance
enhancement. Because most application developers have no direct ability to alter or improve parallel hardware,
methods for improved performance will focus on issues under the control of the application developer.
Considering equation (3) the following methods can be suggested:
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a. To increase Np. Np is usually limited with the parallel hardware being employed. This factor is only under
control when choosing the parallel hardware. The consideration above shows that it would be more
advantageous to use larger values of Np even when processors are not very fast.

b. To increase Sp. As was shown above increasing of Sp brings very small benefit to the overall performance
on I/O-dominant applications. If, for instance Tio=1 and Tp=1, then increasing Sp ad infinitum could only
double the performance.

c. To decrease Tp.  Since Tp (the number of machine instructions needed to process one data block) is the
property of the given application it could be decreased using  conventional programming methods
(advanced programming techniques,  optimization, etc.). We don't consider these ways in the paper.

d. To decrease Tio.  This way seems to be most appropriate. There are three possible ways to decrease Tio.
1. To use faster (and more expensive) storage devices.
2. To use sophisticated parallel file systems [4]. Again, this is often under control of the parallel

hardware vendors and not a direct solution available to the application developer.
3. To use the Distributed Cache Subsystem (DCS) technique described below which allows significant

reductions of I/O delays. This method is not dependent on hardware and is potentially applicable by
any application developer.

6. Distributed Cache Subsystem (DCS)

We consider below the kinds of parallel applications having the following properties:

a. The application is I/O-dominant.
b. The application processes very large external databases.
c. The application requires multiple accesses to some (or all) of the databases data blocks (Note that when

each block is accessed once only, any caching scheme is not efficient).

The conventional well-known way to decrease the time of I/O operations is disk caching.  Both I/O nodes and
processing nodes are usually equipped with their proprietary disk caches which keep most recently used data
blocks. The concept of Distributed Cache Subsystem (DCS) being introduced is based on dedicating some part of
the processing nodes to serve as specialized memory pools (DCS nodes). Their only goal is to serve I/O requests
from the processing nodes and store most recently used data blocks.  We assume that images of the cached files are
stripped between DCS nodes, i.e. first data block of each file is kept on first DCS node, the second data block is on
the second DCS node, etc. So all DCS nodes are coordinated this way and there is no data duplication as may occur
in the local caches of the processing nodes. When some processing node is required to read a data block it
determines what DCS node holds the date and sends an I/O request to the given DCS node. All DCS nodes act as
passive servers; they wait for the I/O requests. Receiving the request, the DCS node determines if the required data
block is in its cache. If it is, it sends the data block to the requester. If it is not, it reads the data block from the I/O
node, sends it to the requester and stores it in the cache. The DCS is one more intermediate layer between
processing nodes and I/O nodes as shown in Figure 1

IPC 
Network

Nio IO nodes
With cache Cio

Ndcs DCS nodes
with cache Cdcs

Np processing nodes
with cache Cp

IPC 
Network

Figure 1. The general overview of MP computer with DCS nodes.
At the first glance, there appears to be no benefits of the DCS if we could allocate large amounts of each

processing nodes memory for a local disk cache. To test this idea, consider a simple analysis of this problem.
Assume there is some large database distributed uniformly between I/O nodes. The data volume is Vd. Let's
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estimate the mean time, Tacc, needed to access the data block. We consider the stationary condition when all
caches are saturated already.

Case I. No DCS

Tacc = P1*0 + (1 - P1) * ( P2*Ttr + (1 - P2)*(Tio + Ttr) )                         (5)
where:

P1 is the probability that data is found in the local cache (access time is zero)

P2 is the probability that data is found in the I/O node cache (access time is the transfer time only)

(1-P2) is the probability that data not found in the I/O node cache (access time is the time to perform the I/O
operation and the transfer time)

If we consider the worst case (data requests are distributed amongst the database as uniformly distributed random
numbers) then we may estimate these probabilities as

P1 = Cp / Vd  ,where Cp is the processing nodes local cache capacity
P2 = Cio / (Vd/Nio) , as total data volume is distributed between I/O nodes, Cio is the I/O nodes cache
capacity

Case II. DCS

Tacc = P1*0 + (1 - P1) * ( P4*Ttr + (1-P4) *( P2*Ttr + (1 - P2)*(Tio + Ttr) ) )                   (6)
where

P4 is the probability that data is found in the Distributed Cache. As there is no data duplication, we could
estimate

P4 = min( 1 , Ndcs * Cdcs / Vd )                            (7)

We see that in the conventional case Tacc (5) is not influenced by the number of processing nodes. Even if we
have a large number of processing nodes with the large local caches it will not reduce Tacc. Increasing the number
of I/O nodes decreases Tacc, however, as it would decrease the probability P2. Unfortunately this factor is out of
the application programmers control.

In case of DCS, the opposite is true.  We could decrease Tacc by increasing Ndcs. When Ndcs * Cdcs > Vd the
probability P4 will be equal to one, so all I/O activity will be eliminated. This condition results when the total
database is  placed into the DCS caches. Even if this condition is not reached, DCS could decrease Tacc
significantly. Consider the following example. Assume some artificial values; Vd = 4000 MB, Nio = 4, Cio = 10
MB, Np  =512, Cp= 4 MB, Tio = 1, Ttr = 0.1, Ndcs= 100, Cdcs=20MB, then we have Tacc = 1.089 for the no
DCS case and Tacc = 0.594 for the DCS case. We see that in the no DCS case local disk caching is almost useless
as Tacc is almost equal to Tio+Ttr, while DCS could decrease Tacc about twice. This condition is true for the very
large databases. For small databases, the database can be efficiently cached in I/O node caches so the dedicated
DCS nodes are almost useless. For instance, let Vd = 40 MB. We have   Tacc = 0.09 for both cases (DCS and no
DCS).

Based on the above analysis, it can be concluded that the DCS technique is efficient for a parallel I/O-dominant
application processing very large databases on MP computers with large number of nodes, as the number of DCS
nodes has to be large enough to hold a significant part of the database being processed. Another case when the
DCS technique could be very efficient is when the MP computer does not have a high-performance parallel I/O
subsystem. For instance, if all I/O is performed with the single workstation-class host computer, the DCS technique
is applicable even for databases of moderate and small size.

The estimations of the data access times above are very rough. We assumed the IPC network latency time is
constant while this is often not the case. Indeed, the IPC network is often a bottleneck preventing performance
increases.  Furthermore, when we employ the DCS technique the DCS nodes play the role of additional " I/O
nodes". Using a large number of DCS nodes (Ndcs instead of the small number of I/O nodes) we can increase the
overall data throughput. In general, the overall data throughput between I/O nodes (DCS nodes) and the processing
nodes is

  Overall data throughput = number of I/O (DCS) nodes  *  throughput of one inter processor link
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The advantage of the DCS is that we could use an optimal number of DCS nodes to achieve the maximal data
throughput instead of using the limited number of I/O nodes (or one host computer, in the worst case). The
advantage offered by a DCS also depends on the individual application and the characteristics of the target MP
computer.

When we decide to employ the DCS technique the problem to be solved is: "What is the optimal number of
DCS nodes?". Indeed, when the number of DCS nodes is small the DCS is not efficient enough as it cannot hold
enough of the database. Besides, long request queues could result when the number of DCS nodes is small. When
the number of DCS nodes is large it processes I/O requests efficiently but the remaining nodes cannot provide
enough processing power. The problem is that by increasing the number of DCS nodes we decrease the number of
actual processing nodes. Therefore, an optimal number of DCS nodes must exist. The optimal proportion between
DCS nodes and processing nodes could be found using the simulation methods or experiments with the real
application.

7. DCS simulations

To study the areas of DCS applicability and to demonstrate the benefits of DCS technique we have used the
simulation model described above. Although it was not mentioned, this model can simulate DCS and consider the
sizes of caches (both processing nodes local caches and I/O nodes caches).

We consider the following assumptions. The MP computer has four parallel I/O nodes each with 16MB. Each
DCS node (if any) has 16MB cache. Each compute node has 2MB local cache. Database sizes are 10MB to 1,000
MB. Data transfer time in interprocessor link is constant Ttr=0.1. The performances are normalized to the single
processor computer's performance row (1,64). The numbers of the DCS nodes were chosen to be quasi-optimal
using the analytical model. Actual performances of the DCS could be slightly higher than shown. As we would like
to obtain preliminary estimations only, the actual achievable performances are of no importance for our
consideration. The simulation results are in Table 4. The numbers of DCS nodes used in simulations are shown in
Table 5.

Table 4. Comparison of relative performances for parallel MP computers with four parallel I/O nodes.

Database size =1,000MB
          Tp=0.01        Tp=0.1         Tp=1

(Np,Sp) no DCS   DCS   no DCS   DCS  no DCS  DCS
( 1,64)  1.00      -    1.00      -   1.00     -
( 2,32)  1.70   1.04    1.70   1.04   1.68  1.04
( 4,16)  2.55   1.46    2.55   1.46   2.55  1.17
( 8, 8)  3.41   2.55    3.42   2.42   3.44  1.17
(16, 4)  3.97   4.93    4.00   4.74   4.05  2.22
(32, 2)  4.44  10.53    4.46   9.40   4.38  4.34
(64, 1)  4.56  26.43    4.61  21.07   4.68  7.93

Database size =100MB
         Tp=0.01        Tp=0.1         Tp=1

(Np,Sp) no DCS   DCS   no DCS   DCS  no DCS   DCS
( 1,64)  1.00      -    1.00      -   1.00      -
( 2,32)  1.67   0.61    1.67   0.60   1.58   0.59
( 4,16)  2.47   0.97    2.51   0.98   2.34   0.68
( 8, 8)  3.39   2.48    3.42   1.93   3.29   0.69
(16, 4)  4.29  16.35    4.32  12.42   4.24   1.52
(32, 2)  5.08  30.02    5.06  33.65   4.90   4.90
(64, 1)  5.59  52.76    5.54  52.98   5.54  24.27
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Database size =10MB
           Tp=0.01       Tp=0.1         Tp=1

(Np,Sp) no DCS   DCS   no DCS   DCS  no DCS  DCS
( 1,64)  1.00      -    1.00      -   1.00     -
( 2,32)  1.91   1.88    1.89    1.83  1.78  1.50
( 4,16)  3.33   2.26    3.28    2.19  2.81  2.86
( 8, 8)  6.44   3.34    6.23    4.29  4.46  4.25
(16, 4) 11.31   5.41   10.42    6.49  6.04  5.33
(32, 2) 17.75   9.84   16.29   10.80  7.48  6.50
(64, 1) 22.11  16.02   20.20   16.29  7.96  7.55

Table 5. The numbers of DCS nodes used for simulations in Table 4.

      Ndcs
 Np    Tp=0.01 Tp=0.1 Tp=1
  2       1       1      1
  4       2       2      1
  8       4       3      1
 16       8       6      2
 32      15      11      4
 64      31      22      7

As expected, the DCS yields no benefit for small databases when I/O nodes' caches are sufficient to provide
efficient caching. Also, DCS is inefficient for small numbers of nodes. DCS provides valuable speed-up when the
number of the DCS nodes is more than the number of I/O nodes and especially when the cumulative volume of the
DCS caches is near or larger than the database's size. Nevertheless, we see that DCS could provide a five times
speed-up even when the cumulative volume of DCS caches is two times less than the database's size. The effect of
DCS is larger for highly I/O-dominant workload (Tp=0.01 and Tp=0.1) than for the workload with large compute
part (Tp=1). It is also demonstrated that the behavior of the MP computer with DCS complies to the rule being
formulated above.

It seems to be the advantage of the DCS technique that it is employed not as a replacement of the current
parallel I/O subsystems but in conjunction with them instead. It allows the application developer to check if the
DCS is efficient under the given conditions and to decide whether to employ the DCS.

An interesting case is when there is no I/O subsystem available to the application programmer.  This case may
result when it is too costly (or impossible) for "Legacy Data" to reside in the file system of the MP. To estimate the
effect of DCS for a MP computer with slow non-parallel I/O, we have performed one more suite of simulations (see
Table 6). The different assumptions are: all processors are considered to be equal (Sp=1). There is only one I/O
node with 4MB cache. It is the case when all I/O is performed with the host-machine to which an MP computer is
attached.

Table 6. Comparison of relative performances for a  parallel MP computer when  I/O is
performed with the single host.

Database size =1,000MB
        Tp=0.01       Tp=0.1         Tp=1

( Np,Sp) no DCS   DCS   no DCS   DCS  no DCS   DCS
( 1, 1)  1.00      -    1.00      -   1.00      -
( 2, 1)  1.10   1.02    1.17   1.00   1.64   1.00
( 4, 1)  1.11   1.41    1.20   1.47   2.08   1.94
( 8, 1)  1.12   2.48    1.20   2.52   2.11   2.12
(16, 1)  1.11   4.84    1.19   4.86   2.09   3.93
(32, 1)  1.01  10.12    1.21   9.94   2.12   7.92
(64, 1)  1.10  25.36    1.19  22.19   2.11  14.34
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Database size =100MB
        Tp=0.01       Tp=0.1         Tp=1

(Np,Sp) no DCS   DCS   no DCS   DCS   no DCS   DCS
( 1, 1)  1.00      -    1.00       -   1.00      -
( 2, 1)  1.09   1.12    1.17    1.11   1.64   1.06
( 4, 1)  1.10   1.79    1.20    1.63   2.09   2.14
( 8, 1)  1.10   4.59    1.21    1.85   2.18   2.48
(16, 1)  1.12  29.87    1.21   22.78   2.17   5.35
(32, 1)  1.12  55.06    1.22   59.87   2.16  16.49
(64, 1)  1.11  98.17    1.33  106.69   2.15  87.72

(Table 6. Continued)

Database size =10MB
        Tp=0.01       Tp=0.1         Tp=1

( Np,Sp) no DCS   DCS   no DCS   DCS   no DCS   DCS
( 1, 1)  1.00      -    1.00      -    1.00      -
( 2, 1)  1.12   6.32    1.28   3.73    1.76   1.45
( 4, 1)  1.17   7.99    1.37   5.86    2.71   4.21
( 8, 1)  1.20  12.05    1.40  12.94    3.23   9.58
(16, 1)  1.20  19.72    1.39  22.23    3.25  18.59
(32, 1)  1.18  36.16    1.41  41.38    3.25  35.82
(64, 1)  1.21  60.30    1.42  72.08    3.24  70.76

As expected we see that the MP computer with the I/O being performed with the single host-machine is
absolutely inappropriate to carry the I/O-dominant workloads. The same computer being equipped with the DCS
could provide highly efficient execution of the I/O-dominant applications. Actually, the estimations in Table 6 are
overstated as we don't consider the initial time needed to saturate disk caches. This time might be significant while
using the slow I/O node.

An interesting effect is that 64 processors could provide more than 64 times speed-up. This effect is due to
having a sufficient number of DCS nodes to eliminate any actual I/O activity compared to the (1,1) case where I/O
activity with Tio=1 is high.

8. Additional ways to improve the DCS performance

If the MP computer nodes are equipped with large enough memories then there are two additional approaches
to improve performance of the MP computer with DCS.

1. If the parallel I/O-dominant application does not use the all nodes memory then conventional
multiprogramming techniques could be employed to improve the performance. Two or more instances of
the application (compute processes) run on the same compute node. As a compute node is usually under-
loaded these additional processes could share the processor efficiently. This technique has been employed
for at least thirty years for conventional computers but is employed rarely in parallel computers as it is
inefficient for CPU dominant scientific applications. Due to space limitations we do not show these
results, however, we have found that for highly I/O-dominant workloads use of multiprogramming could
improve the performance about twice.

2. Under the same condition (low memory consumption of the parallel application) another way to improve
performance may be employed. We considered the case when DCS runs on the dedicated nodes. If there
are sufficient amounts of free memory on compute nodes, then DCS processes could run on compute
nodes. So two processes run on the same node: the application process and the DCS process. This will
improve the performance as maximal numbers of both DCS and compute nodes are used. The problem of
determining the optimal number of DCS nodes is completely eliminated.

For instance, if the MP computer consists of 128 nodes with 16MB of memory each and the application
requires 6MB, then 10MB on each node could be allocated for the DCS process. If we use 50 dedicated DCS nodes
we have only 78 actual compute nodes and the cumulative DCS cache of size 800MB. Using non-dedicated DCS
nodes we have 128 compute nodes and 128 DCS nodes with the cumulative DCS cache of size 1,280MB.
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In our models we considered the "low memory" case and did not use the above "ample memory" assumption. It
might be expected that this will improve the performance significantly and we expect to study this case further.  It
is hoped that when considering such cases the analysis presented here will allow decisions to be made on "price-to-
performance" arguments and not on unconfirmed assumptions  For example, before investing in the machine above
(2048 MB of RAM; 16MB per node) the customer should expect at least four times better performance than a
machine that uses one quarter as much memory (512MB of RAM; 4MB per node) .

9. Experiments

To further test our results, we developed some benchmarking programs for  a parallel computer. The
benchmarking  was done on a nCUBE-2 massively parallel computer using the special synthetic workload
program.  This program imitates both the DCS nodes and compute nodes. The different processor speeds were
imitated by varying the length of the dummy loop representing the compute part of the workload. The performance
was estimated with the real time needed to perform a given number of 2K blocks transmissions between DCS
nodes and compute nodes. The predicted performance was estimated using the simulation model with input
parameters reflecting the real benchmark program parameters. The total data transfer between DCS nodes and
compute nodes was 200MB in each experiment. Knowing the time needed to run the benchmark program we could
estimate the actual data throughput. Predicted performance was estimated in Table 4 (Database size=10MB,
Tp=0.1) data being normalized by row (4,16). The results in Table 7 confirm the general rule above and show
sufficient compliance with the simulation results. These benchmarks demonstrate that our simulation model
reflects real system behavior with sufficient accuracy and could be used to predict other system performance.

The described DCS technique has been implemented in Paralogic's n-parallel PROLOG [5].  Several
benchmarks have been developed and confirm the results here.  Interestingly, hyper speed-up was noted and almost
linear scalability was observed.  An additional important point is use of a scalable programming language to
develop the compute portion of the application.  As has been noted, an optimal combination of DCS and compute
nodes will result in the best performance.  This ratio may vary from application to application.  If the application is
not scalable (i.e. locked to a specific number of computing nodes), then a compute bottle-neck may result.  In this
case, n-parallel PROLOG is scalable and provide applications that run on one to "n" processors. By using n-
parallel PROLOG programmer responsibilities for load balancing, inter processor communication, data
consistency, and the DCS are hidden from the user.  On the other hand, using more conventional programming
languages to create applications that take advantage of the results presented above would be extremely difficult to
create.

Table 7. The experimental results  obtained for the synthetic workload benchmark program.

                     Normalized  Predicted  Cumulative      DCS node
(Np,Sp) Ndcs   Time      perf.     perf.      throughput    throughput
              (sec)                           (MB/sec)       (MB/sec)
( 4,16)   2    97.2      1.0       1.0          2.06           1.03
( 8, 8)   3    49.7      2.0       2.0          4.02           1.34
(16, 4)   5    30.2      3.2       3.0          6.62           1.32
(32, 2)   8    20.6      4.7       4.9          9.71           1.21
(64, 1)  10    16.0      6.1       7.4         12.50           1.14

10. Conclusions

1. The proposed general law was formulated to allow better estimations of the performance (speed/cost) of MP
computers for I/O-dominant applications.

2. This law is confirmed with the simple proof, analytical model, simulation and benchmarking.
3. The Distributed Cache Subsystem technique is proposed to improve the performance of the MP computer

running I/O-dominant applications. It is shown with simulations and benchmarking that this technique
could be employed efficiently to achieve high performance for parallel I/O-dominant applications even on
MP computers with slow non-parallel I/O.

4. It is shown that MP computer containing a small number of high-performance processors is not the best
choice for I/O-dominant applications area. The large array of slow (and inexpensive) processors equipped
with the high-performance parallel I/O subsystem and/or Distributed Cache Subsystem could provide a
larger absolute performance and better price-to-performance index.
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